第一臨床醫(yī)學(xué)院郭軍紅課題組聯(lián)合第三軍醫(yī)大學(xué)王延江教授課題組提出阿爾茨海默病體液生物標(biāo)志物的新觀點(diǎn)
2022年3月19日,來(lái)自山西醫(yī)科大學(xué)第一臨床醫(yī)學(xué)院的郭軍紅教授及黃珊博士研究生聯(lián)合第三軍醫(yī)大學(xué)的王延江教授在Neuroscience Bulletin(IF=5.203)上發(fā)表了題為“Biofluid biomarkers of Alzheimer’s disease: progress, problems, and perspectives.”的最新文章。該文章圍繞AD外周體液生物標(biāo)志物,首先介紹了A-T-N-X框架的建立過(guò)程及過(guò)去普遍存在的問(wèn)題。針對(duì)A-T-N-X框架的具體內(nèi)容進(jìn)行了深入解讀,剖析其中存在的優(yōu)勢(shì)及挑戰(zhàn),并系統(tǒng)總結(jié)了相應(yīng)的解決方案,為AD生物標(biāo)志物的進(jìn)一步研究探索提供了方向。最后,基于目前的生物標(biāo)志物檢測(cè)手段及研究現(xiàn)狀,作者提出了更為全面的AD診斷體系,同時(shí)也為今后AD及其他神經(jīng)退行性疾病生物標(biāo)志物的研究與應(yīng)用開(kāi)辟了新的方向。
阿爾茨海默?。?/span>Alzheimer’s disease, AD)是一種進(jìn)行性神經(jīng)退行性疾病,是最常見(jiàn)的癡呆癥類型,以β-淀粉樣蛋白(Aβ)斑塊形成、細(xì)胞內(nèi)Tau蛋白聚集、神經(jīng)元和突觸丟失等病理表現(xiàn)為特征。隨著人口老齡化的進(jìn)展,AD發(fā)病率逐年增加,給社會(huì)帶來(lái)巨大的經(jīng)濟(jì)負(fù)擔(dān)。目前,對(duì)AD的診斷仍存在困難,生物標(biāo)志物對(duì)于準(zhǔn)確和早期識(shí)別AD至關(guān)重要,也是有效治療該病的先決條件。
AD生物標(biāo)志物A/T/N框架在2016年由Clifford等人首次提出,2018年被國(guó)際老齡化和阿爾茨海默病協(xié)會(huì)接受并推廣。“A”是指Aβ生物標(biāo)志物(淀粉樣蛋白PET或腦脊液Aβ-42),“T”是Tau生物標(biāo)志物(腦脊液磷酸化Tau(p-tau)或p-Tau PET),“N”是神經(jīng)變性或神經(jīng)元損傷的生物標(biāo)志物([18F]-氟脫氧葡萄糖 PET、結(jié)構(gòu)磁共振或腦脊液總Tau(t-tau))。這一臨床生物學(xué)框架描繪了AD的病理生理特征,增加了AD診斷的準(zhǔn)確性。然而,現(xiàn)有的框架很難對(duì)AD的病理改變提供全面的解釋,許多重要的神經(jīng)損傷標(biāo)志物未被包含其中。同時(shí),腦脊液檢查的有創(chuàng)性及PET掃描價(jià)格昂貴且輻射暴露的特點(diǎn)限制了該診斷框架的應(yīng)用。因此,AD外周生物標(biāo)志物框架的完善至關(guān)重要。
外周體液A-T-N-X框架的建立
由于腦脊液檢查具有有創(chuàng)性,同時(shí)PET掃描技術(shù)價(jià)格昂貴且具有輻射暴露,因此,外周生物標(biāo)志物的研究對(duì)AD診斷具有重要價(jià)值。目前研究人員發(fā)現(xiàn)一些血漿生物標(biāo)志物,在診斷AD的特異性和靈敏性與腦脊液檢查和PET掃描相當(dāng)。然而,血漿生物標(biāo)志物的推廣存在巨大的困難。①只有來(lái)自中樞神經(jīng)系統(tǒng)(CNS)的一小部分生物標(biāo)志物能夠通過(guò)血腦屏障(BBB)、蛛網(wǎng)膜顆粒、類淋巴系統(tǒng)和血管系統(tǒng)進(jìn)入外周體液系統(tǒng),進(jìn)而在血液中被稀釋,并且在復(fù)雜的血液背景中,生物標(biāo)志物可以被酶降解,或與各種血液蛋白或血細(xì)胞形成復(fù)合體,這些因素阻礙了生物標(biāo)志物的準(zhǔn)確檢測(cè);②肝臟和腎臟以及相關(guān)器官的巨噬細(xì)胞可以清除生物標(biāo)志物,一些外周組織可能會(huì)產(chǎn)生相同的生物標(biāo)志物并釋放到血液中;③由于新陳代謝、飲食和藥物等因素的不同,外周生物標(biāo)志物的水平在個(gè)體之間波動(dòng),同時(shí)生物標(biāo)志物水平隨不同疾病的不同時(shí)期也會(huì)存在波動(dòng)。所有這些因素都阻礙了血漿生物標(biāo)志物與大腦中對(duì)應(yīng)的生物標(biāo)志物之間的相關(guān)性。針對(duì)這些存在的問(wèn)題有一些解決方案。首先,開(kāi)發(fā)超敏感技術(shù)可以擴(kuò)大血漿生物標(biāo)志物的檢測(cè)范圍。同時(shí),新開(kāi)發(fā)的抗體在捕獲生物標(biāo)志物方面更具特異性和敏感性。在血液中濃縮生物標(biāo)志物的樣本處理方法也可以解決稀釋效應(yīng)。其次,血液神經(jīng)元源性外泌體(NDEs)是從CNS特異性衍生出來(lái)的,故NDEs可較為特異性反應(yīng)CNS中生物標(biāo)志物水平,同時(shí),NDEs中的生物標(biāo)志物可以減少血液中的干擾,保護(hù)內(nèi)容物不被降解。第三,不同的采血位置可能會(huì)影響檢測(cè)結(jié)果。例如,頸內(nèi)靜脈可能是削弱外周器官清除和血液稀釋效果的最佳采血點(diǎn)。第四,BBB紊亂在AD中很常見(jiàn),其嚴(yán)重程度因疾病分期和個(gè)體因素而異。用統(tǒng)一的方法評(píng)價(jià)BBB通透性有助于更準(zhǔn)確地分析外周A-T-N-X系統(tǒng)。除了BBB外,生物標(biāo)志物從CNS到外周體液的途徑仍不完全清楚,需要進(jìn)一步研究探討。最后,對(duì)AD患者的體液采集方法、采集時(shí)間和血漿生物標(biāo)志物檢測(cè)方法進(jìn)行統(tǒng)一能夠有效解決個(gè)體及時(shí)相差異性的問(wèn)題。
除血漿生物標(biāo)志物外,許多其他外周生物標(biāo)志物也在積極研究中,為AD的診斷及篩查提供更多可能性。
A-T-N-X框架的內(nèi)容
Aβ
Aβ是一種由36~43個(gè)氨基酸組成的多肽,由淀粉樣前體蛋白(APP)通過(guò)β-分泌酶和γ-分泌酶剪切而來(lái)。Aβ是AD的中樞生物標(biāo)志物,同時(shí)也是淀粉樣斑塊的主要成分。腦脊液中Aβ40、Aβ42及其比值和PET檢測(cè)淀粉樣蛋白已成為AD診斷的重要手段。為了解決其有創(chuàng)性及高成本的缺陷,研究人員提出血漿Aβ檢測(cè)。然而,血漿Aβ作為AD生物標(biāo)志物仍存在困難。首先,Aβ粘性較高,很難向外周轉(zhuǎn)運(yùn)。其次,由于血液的稀釋等因素,目前的檢測(cè)手段很難準(zhǔn)確測(cè)定血液中的可溶性Aβ水平。同時(shí),外周也會(huì)產(chǎn)生Aβ,且血液中多種蛋白及細(xì)胞與Aβ結(jié)合可掩蓋其抗原表位使其不易被抗體捕獲,降低血液Aβ診斷AD的特異性。此外,前述測(cè)定NDEs中的Aβ只能反映CNS中細(xì)胞內(nèi)Aβ水平,而AD病理主要體現(xiàn)在細(xì)胞外淀粉樣斑塊的形成,因此,NDEs中的Aβ無(wú)法直接反映AD病理特征。這些問(wèn)題的存在給外周Aβ作為AD生物標(biāo)志物帶來(lái)巨大的挑戰(zhàn)。為此,首先要探究Aβ外周轉(zhuǎn)運(yùn)的機(jī)制及其影響因素。其次,檢測(cè)前的預(yù)處理能夠降低血液中各種因素的干擾,如ELISA檢測(cè)Aβ水平前,對(duì)血漿樣本進(jìn)行蛋白變性處理,能夠使與蛋白結(jié)合的Aβ釋放出來(lái),提高結(jié)果的準(zhǔn)確性。同時(shí),AD患者的基因表達(dá)在中樞和外周存在差異,有助于區(qū)分Aβ的來(lái)源,從而幫助準(zhǔn)確測(cè)定與AD病理相關(guān)的外周Aβ水平。
Tau
Tau蛋白是微管相關(guān)蛋白Tau(MAPT)基因的產(chǎn)物,具有穩(wěn)定微管的生理功能。病理性Tau被認(rèn)為是Aβ的下游蛋白,反映神經(jīng)元的損傷程度。病理性Tau存在多種翻譯后修飾(Post-translational modifications, PTMs),包括磷酸化、乙酰化、甲基化、泛素化、糖基化和硝化等。同時(shí),PTM存在不同的修飾位點(diǎn),特殊的PTM位點(diǎn)與AD病理相關(guān),有助于AD的診斷。PTM中最常見(jiàn)的是磷酸化Tau,p-Tau是神經(jīng)纖維纏結(jié)的主要成分。其中,腦脊液及血液中的p-tau217、p-tau231和p-tau181對(duì)AD的特異性較高。P-tau217、P-tau181等在AD無(wú)癥狀階段特異性升高,并隨著AD的進(jìn)展而變化,從而有助于AD早期診斷、鑒別診斷、病情變化監(jiān)測(cè)及預(yù)后判斷。然而,在不同的研究中,p-tau水平對(duì)AD診斷的特異性存在差異,這可能與檢測(cè)前的預(yù)處理、檢測(cè)方法及使用的試劑種類有關(guān)。
神經(jīng)退行性變的生物標(biāo)志物
神經(jīng)絲輕鏈(neurofilament light chain, NFL)作為軸突骨架的組成部分,是反映軸突變性的生物標(biāo)志物,在臨床癥狀出現(xiàn)前就已出現(xiàn)其水平的改變,同時(shí)隨著AD的進(jìn)展發(fā)生變化;T-tau是神經(jīng)變性的生物標(biāo)志物,反映神經(jīng)元分泌Tau和皮質(zhì)厚度的非特異性變化;類視錐蛋白-1(visinin-like protein 1, VILIP-1)是一種在神經(jīng)元中表達(dá)的鈣敏感蛋白,反映神經(jīng)元損傷。然而,這些生物標(biāo)志物缺乏特異性,在應(yīng)用時(shí)需要與AD特異性生物標(biāo)志物,如Aβ等聯(lián)合應(yīng)用以提高診斷的準(zhǔn)確性。
“X”生物標(biāo)志物
“X”指神經(jīng)免疫失調(diào)、突觸功能障礙和BBB改變等其他AD可能發(fā)病機(jī)制中涉及的生物標(biāo)志物,在A/T/N框架中加入“X”能夠更加全面反映AD病理變化,闡明AD的發(fā)病機(jī)制。我們將“X”分為兩部分,分別是中樞X(XC),即與突觸損傷、神經(jīng)膠質(zhì)細(xì)胞、神經(jīng)炎癥和免疫等相關(guān)的生物標(biāo)記物,和外周X(XP),即與系統(tǒng)免疫、炎癥和新陳代謝等相關(guān)的生物標(biāo)記物。
突觸功能障礙的生物標(biāo)志物
突觸是學(xué)習(xí)和記憶的基本結(jié)構(gòu),突觸丟失與認(rèn)知能力下降有關(guān)。反映突觸功能障礙的生物標(biāo)志物有樹(shù)突狀蛋白神經(jīng)顆粒素(dendritic protein neurogranin, Ng)、突觸前蛋白,如神經(jīng)調(diào)節(jié)素(neuromodulin, GAP43)、突觸體相關(guān)蛋白25(Synaptosomalassociated protein 25 , SNAP25)及突觸結(jié)合蛋白等。
神經(jīng)膠質(zhì)細(xì)胞、神經(jīng)免疫和神經(jīng)炎癥的生物標(biāo)志物
AD的發(fā)病與星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的激活密切相關(guān),星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的生物標(biāo)志物與AD有關(guān)。其中具有代表性的有膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein, GFAP)、S100B、幾丁質(zhì)酶-3樣蛋白1(chitinase-3-like protein 1, YKL-40)、髓樣細(xì)胞觸發(fā)受體2(triggering receptor expressed on myeloid cells-2 , TREM2)及MicroRNA-425等。
系統(tǒng)免疫、炎癥和代謝的生物標(biāo)志物
一些非特異性外周生物標(biāo)志物,如腫瘤壞死因子、白細(xì)胞介素2、免疫球蛋白和補(bǔ)體家族,可用于評(píng)估AD的炎癥狀態(tài)。AD常伴隨有多種代謝紊亂性疾病,相應(yīng)的血漿代謝物包括葡萄糖、血脂、氨基酸、維生素和微量元素,都與AD有關(guān)。高水平的膽固醇和甘油三酯與AD相關(guān)。血液中同型半胱氨酸水平較高,維生素A、B12、C、D、E和葉酸水平較低,與MCI和AD相關(guān)。這些生物標(biāo)志物對(duì)診斷AD的特異性不高,但能夠與AD特異性生物標(biāo)志物如Aβ等協(xié)同應(yīng)用提高診斷的準(zhǔn)確性及檢出率。
AD生物標(biāo)志物的檢測(cè)技術(shù)
在AD中最廣泛使用的生物標(biāo)志物分析技術(shù)是質(zhì)譜(MS)分析和免疫檢測(cè)。近來(lái),越來(lái)越多的檢測(cè)技術(shù)出現(xiàn),提高了生物標(biāo)志物的檢測(cè)準(zhǔn)確性及靈敏性。外周生物標(biāo)志物的分析基于經(jīng)典方法或新的超靈敏技術(shù),包括ELISA、單分子陣列(SIMOA)、免疫沉淀/MS、液相色譜-MS、免疫磁性還原(IMR)、多聚體檢測(cè)系統(tǒng)、還原石墨烯氧化場(chǎng)效應(yīng)晶體管和冷凍電子顯微鏡。不同的生物標(biāo)志物有其合適的檢測(cè)方法。但是,更可靠、方便、準(zhǔn)確的檢測(cè)手段還需要進(jìn)一步研究探索。
總結(jié)與展望
越來(lái)越多的生物標(biāo)志物運(yùn)用于AD的臨床診斷,提高了AD診斷的準(zhǔn)確性,為AD的早期預(yù)防及早期診斷提供了可能。然而,我們需要進(jìn)一步探索更為穩(wěn)定可靠、特異性高的生物標(biāo)志物及其檢測(cè)方法。同時(shí),基于A-T-N-X框架的臨床診斷體系也需要進(jìn)一步完善。我們認(rèn)為,需要建立以生物標(biāo)志物為核心,從患者基本信息(包括一般情況)、臨床表現(xiàn)(尤其是認(rèn)知評(píng)估)、基礎(chǔ)檢查及實(shí)驗(yàn)室檢查、基因檢測(cè)等多個(gè)維度全面評(píng)估的AD綜合診斷模型。AD的A-T-N-X框架為研究者提供了一種共同語(yǔ)言。今后應(yīng)更加重視外周生物體液A-T-N-X框架的研究,尤其是利用超靈敏技術(shù)提高外周生物體液Aβ檢測(cè)的準(zhǔn)確性。
參考文獻(xiàn)
[1] Jia L, Quan M, Fu Y, Zhao T, Li Y, Wei C, Tang Y, Qin Q, Wang F, Qiao Y, Shi S, Wang YJ, Du Y, Zhang J, Zhang J, Luo B, Qu Q, Zhou C, Gauthier S, Jia J; Group for the Project of Dementia Situation in China. Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol. 2020 Jan;19(1):81-92. doi: 10.1016/S1474-4422(19)30290-X. Epub 2019 Sep 4. PMID: 31494009.
[2] Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS, Petersen RC, Scheltens P, Sperling RA, Dubois B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016 Aug 2;87(5):539-47. doi: 10.1212/WNL.0000000000002923. Epub 2016 Jul 1. PMID: 27371494; PMCID: PMC4970664.
[3] Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R; Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018 Apr;14(4):535-562. doi: 10.1016/j.jalz.2018.02.018. PMID: 29653606; PMCID: PMC5958625.
[4] Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE, Ovod V, Munsell LY, Mawuenyega KG, Miller-Thomas MM, Moran CJ, Cross DT 3rd, Derdeyn CP, Bateman RJ. Amyloid-β efflux from the central nervous system into the plasma. Ann Neurol. 2014 Dec;76(6):837-44. doi: 10.1002/ana.24270. Epub 2014 Oct 24. PMID: 25205593; PMCID: PMC4355962.
[5] Liu YH, Wang J, Li QX, Fowler CJ, Zeng F, Deng J, Xu ZQ, Zhou HD, Doecke JD, Villemagne VL, Lim YY, Masters CL, Wang YJ. Association of naturally occurring antibodies to β-amyloid with cognitive decline and cerebral amyloidosis in Alzheimer's disease. Sci Adv. 2021 Jan 1;7(1):eabb0457. doi: 10.1126/sciadv.abb0457. PMID: 33523832; PMCID: PMC7775771.
[6] Cheng Y, Tian DY, Wang YJ. Peripheral clearance of brain-derived Aβ in Alzheimer's disease: pathophysiology and therapeutic perspectives. Transl Neurodegener. 2020 May 7;9(1):16. doi: 10.1186/s40035-020-00195-1. PMID: 32381118; PMCID: PMC7204069.
[7] Wang YR, Wang QH, Zhang T, Liu YH, Yao XQ, Zeng F, Li J, Zhou FY, Wang L, Yan JC, Zhou HD, Wang YJ. Associations Between Hepatic Functions and Plasma Amyloid-Beta Levels-Implications for the Capacity of Liver in Peripheral Amyloid-Beta Clearance. Mol Neurobiol. 2017 Apr;54(3):2338-2344. doi: 10.1007/s12035-016-9826-1. Epub 2016 Mar 9. PMID: 26957302.
[8] Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology. 2007 Feb 27;68(9):666-9. doi: 10.1212/01.wnl.0000256043.50901.e3. PMID: 17325273.
[9] Karki HP, Jang Y, Jung J, Oh J. Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detection of alzheimer's disease. J Nanobiotechnology. 2021 Mar 9;19(1):72. doi: 10.1186/s12951-021-00814-7. Erratum in: J Nanobiotechnology. 2021 Apr 26;19(1):118. PMID: 33750392; PMCID: PMC7945670.
[10] Kim K , Lee CH , Park CB . Chemical sensing platforms for detecting trace-level Alzheimer's core biomarkers. Chem Soc Rev. 2020 Aug 7;49(15):5446-5472. doi: 10.1039/d0cs00107d. Epub 2020 Jul 6. PMID: 32627779.
[11] Jia L, Qiu Q, Zhang H, Chu L, Du Y, Zhang J, Zhou C, Liang F, Shi S, Wang S, Qin W, Wang Q, Li F, Wang Q, Li Y, Shen L, Wei Y, Jia J. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement. 2019 Aug;15(8):1071-1080. doi: 10.1016/j.jalz.2019.05.002. PMID: 31422798.
[12] Jia L, Zhu M, Kong C, Pang Y, Zhang H, Qiu Q, Wei C, Tang Y, Wang Q, Li Y, Li T, Li F, Wang Q, Li Y, Wei Y, Jia J. Blood neuro-exosomal synaptic proteins predict Alzheimer's disease at the asymptomatic stage. Alzheimers Dement. 2021 Jan;17(1):49-60. doi: 10.1002/alz.12166. Epub 2020 Aug 10. PMID: 32776690; PMCID: PMC7984076.
[13] Xing W, Gao W, Lv X, Xu X, Zhang Z, Yan J, Mao G, Bu Z. The Diagnostic Value of Exosome-Derived Biomarkers in Alzheimer's Disease and Mild Cognitive Impairment: A Meta-Analysis. Front Aging Neurosci. 2021 Mar 1;13:637218. doi: 10.3389/fnagi.2021.637218. PMID: 33732139; PMCID: PMC7957006.
[14] Pannee J, Gobom J, Shaw LM, Korecka M, Chambers EE, Lame M, Jenkins R, Mylott W, Carrillo MC, Zegers I, Zetterberg H, Blennow K, Portelius E. Round robin test on quantification of amyloid-β 1-42 in cerebrospinal fluid by mass spectrometry. Alzheimers Dement. 2016 Jan;12(1):55-9. doi: 10.1016/j.jalz.2015.06.1890. Epub 2015 Jul 21. PMID: 26206625.
[15] Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-Based ATN Biomarkers of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis. 2021;79(1):177-195. doi: 10.3233/JAD-200900. PMID: 33252080.
[16] Pawlik P, B?ochowiak K. The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer's Disease and Parkinson's Disease. Diagnostics (Basel). 2021 Feb 22;11(2):371. doi: 10.3390/diagnostics11020371. PMID: 33671562; PMCID: PMC7926361.
[17] Yilmaz A, Ugur Z, Bisgin H, Akyol S, Bahado-Singh R, Wilson G, Imam K, Maddens ME, Graham SF. Targeted Metabolic Profiling of Urine Highlights a Potential Biomarker Panel for the Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment: A Pilot Study. Metabolites. 2020 Aug 31;10(9):357. doi: 10.3390/metabo10090357. PMID: 32878308; PMCID: PMC7569858.
[18] Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, Iaccarino L, Bourakova V, Cobigo Y, Heuer H, Spina S, VandeVrede L, Chai X, Proctor NK, Airey DC, Shcherbinin S, Duggan Evans C, Sims JR, Zetterberg H, Blennow K, Karydas AM, Teunissen CE, Kramer JH, Grinberg LT, Seeley WW, Rosen H, Boeve BF, Miller BL, Rabinovici GD, Dage JL, Rojas JC, Boxer AL; Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) investigators. Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nat Med. 2020 Mar;26(3):387-397. doi: 10.1038/s41591-020-0762-2. Epub 2020 Mar 2. PMID: 32123386; PMCID: PMC7101073.
[19] de Wolf F, Ghanbari M, Licher S, McRae-McKee K, Gras L, Weverling GJ, Wermeling P, Sedaghat S, Ikram MK, Waziry R, Koudstaal W, Klap J, Kostense S, Hofman A, Anderson R, Goudsmit J, Ikram MA. Plasma tau, neurofilament light chain and amyloid-β levels and risk of dementia; a population-based cohort study. Brain. 2020 Apr 1;143(4):1220-1232. doi: 10.1093/brain/awaa054. PMID: 32206776; PMCID: PMC7174054.
[20] Palmqvist S, Insel PS, Stomrud E, Janelidze S, Zetterberg H, Brix B, Eichenlaub U, Dage JL, Chai X, Blennow K, Mattsson N, Hansson O. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer's disease. EMBO Mol Med. 2019 Dec;11(12):e11170. doi: 10.15252/emmm.201911170. Epub 2019 Nov 11. PMID: 31709776; PMCID: PMC6895602.
[21] Roher AE, Esh CL, Kokjohn TA, Casta?o EM, Van Vickle GD, Kalback WM, Patton RL, Luehrs DC, Daugs ID, Kuo YM, Emmerling MR, Soares H, Quinn JF, Kaye J, Connor DJ, Silverberg NB, Adler CH, Seward JD, Beach TG, Sabbagh MN. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease. Alzheimers Dement. 2009 Jan;5(1):18-29. doi: 10.1016/j.jalz.2008.10.004. PMID: 19118806; PMCID: PMC2663406.
[22] Lopatko Lindman K, Weidung B, Olsson J, Josefsson M, Johansson A, Eriksson S, Hallmans G, Elgh F, L?vheim H. Plasma Amyloid-β in Relation to Antibodies Against Herpes Simplex Virus, Cytomegalovirus, and Chlamydophila pneumoniae. J Alzheimers Dis Rep. 2021 Apr 6;5(1):229-235. doi: 10.3233/ADR-210008. PMID: 34113780; PMCID: PMC8150254.
[23] Wang M, Peng IF, Li S, Hu X. Dysregulation of antimicrobial peptide expression distinguishes Alzheimer's disease from normal aging. Aging (Albany NY). 2020 Jan 6;12(1):690-706. doi: 10.18632/aging.102650. Epub 2020 Jan 6. PMID: 31907335; PMCID: PMC6977672.
[24] Kim JW, Byun MS, Lee JH, Yi D, Jeon SY, Sohn BK, Lee JY, Shin SA, Kim YK, Kang KM, Sohn CH, Lee DY; KBASE Research Group. Serum albumin and beta-amyloid deposition in the human brain. Neurology. 2020 Aug 18;95(7):e815-e826. doi: 10.1212/WNL.0000000000010005. Epub 2020 Jul 20. PMID: 32690787; PMCID: PMC7605506.
[25] Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh L. On the Role of Platelet-Generated Amyloid Beta Peptides in Certain Amyloidosis Health Complications. Front Immunol. 2020 Oct 2;11:571083. doi: 10.3389/fimmu.2020.571083. PMID: 33123145; PMCID: PMC7567018.
[26] Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, Holtzman DM, Morris JC, Benzinger TLS, Xiong C, Fagan AM, Bateman RJ. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019 Oct 22;93(17):e1647-e1659. doi: 10.1212/WNL.0000000000008081. Epub 2019 Aug 1. PMID: 31371569; PMCID: PMC6946467.
[27] Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL, Yanagisawa K. High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature. 2018 Feb 8;554(7691):249-254. doi: 10.1038/nature25456. Epub 2018 Jan 31. PMID: 29420472.
[28] Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV, De Los Santos MB, Klickstein N, Corjuc DL, Corjuc BT, Dooley PM, Viode A, Oakley DH, Moore BD, Mullin K, Jean-Gilles D, Clark R, Atchison K, Moore R, Chibnik LB, Tanzi RE, Frosch MP, Serrano-Pozo A, Elwood F, Steen JA, Kennedy ME, Hyman BT. Author Correction: Tau molecular diversity contributes to clinical heterogeneity in Alzheimer's disease. Nat Med. 2021 Feb;27(2):356. doi: 10.1038/s41591-021-01251-7. Erratum for: Nat Med. 2020 Aug;26(8):1256-1263. PMID: 33514949; PMCID: PMC8363121.
[29] Barthélemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. J Exp Med. 2020 Nov 2;217(11):e20200861. doi: 10.1084/jem.20200861. PMID: 32725127; PMCID: PMC7596823.
[30] Leuzy A, Janelidze S, Mattsson-Carlgren N, Palmqvist S, Jacobs D, Cicognola C, Stomrud E, Vanmechelen E, Dage JL, Hansson O. Comparing the Clinical Utility and Diagnostic Performance of CSF P-Tau181, P-Tau217, and P-Tau231 Assays. Neurology. 2021 Oct 26;97(17):e1681-e1694. doi: 10.1212/WNL.0000000000012727. Epub 2021 Sep 7. PMID: 34493616; PMCID: PMC8605616.
[31] Mielke MM, Frank RD, Dage JL, Jeromin A, Ashton NJ, Blennow K, Karikari TK, Vanmechelen E, Zetterberg H, Algeciras-Schimnich A, Knopman DS, Lowe V, Bu G, Vemuri P, Graff-Radford J, Jack CR Jr, Petersen RC. Comparison of Plasma Phosphorylated Tau Species With Amyloid and Tau Positron Emission Tomography, Neurodegeneration, Vascular Pathology, and Cognitive Outcomes. JAMA Neurol. 2021 Sep 1;78(9):1108-1117. doi: 10.1001/jamaneurol.2021.2293. PMID: 34309632; PMCID: PMC8314178.
[32] Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, Su Y, Chen Y, Serrano GE, Leuzy A, Mattsson-Carlgren N, Strandberg O, Smith R, Villegas A, Sepulveda-Falla D, Chai X, Proctor NK, Beach TG, Blennow K, Dage JL, Reiman EM, Hansson O. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA. 2020 Aug 25;324(8):772-781. doi: 10.1001/jama.2020.12134. PMID: 32722745; PMCID: PMC7388060.
[33] Suárez-Calvet M, Karikari TK, Ashton NJ, Lantero Rodríguez J, Milà-Alomà M, Gispert JD, Salvadó G, Minguillon C, Fauria K, Shekari M, Grau-Rivera O, Arenaza-Urquijo EM, Sala-Vila A, Sánchez-Benavides G, González-de-Echávarri JM, Kollmorgen G, Stoops E, Vanmechelen E, Zetterberg H, Blennow K, Molinuevo JL; ALFA Study. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer's continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med. 2020 Dec 7;12(12):e12921. doi: 10.15252/emmm.202012921. Epub 2020 Nov 10. PMID: 33169916; PMCID: PMC7721364.
[34] Karikari TK, Emer?i? A, Vrillon A, Lantero-Rodriguez J, Ashton NJ, Kramberger MG, Dumurgier J, Hourregue C, ?u?nik S, Brinkmalm G, Rot U, Zetterberg H, Paquet C, Blennow K. Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer's disease diagnosis. Alzheimers Dement. 2021 May;17(5):755-767. doi: 10.1002/alz.12236. Epub 2020 Nov 30. PMID: 33252199; PMCID: PMC8246793.
[35] Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, Petzold A, Blennow K, Zetterberg H, Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018 Oct;14(10):577-589. doi: 10.1038/s41582-018-0058-z. PMID: 30171200.
[36] Zetterberg H. Review: Tau in biofluids - relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol. 2017 Apr;43(3):194-199. doi: 10.1111/nan.12378. PMID: 28054371.
[37] Mielke MM, Przybelski SA, Lesnick TG, Kern S, Zetterberg H, Blennow K, Knopman DS, Graff-Radford J, Petersen RC, Jack CR Jr, Vemuri P. Comparison of CSF neurofilament light chain, neurogranin, and tau to MRI markers. Alzheimers Dement. 2021 May;17(5):801-812. doi: 10.1002/alz.12239. Epub 2021 Mar 4. PMID: 33663022; PMCID: PMC8119371.
[38] Shim KH, Kang MJ, Suh JW, Pyun JM, Ryoo N, Park YH, Youn YC, Jang JW, Jeong JH, Park KW, Choi SH, Suk K, Lee HW, Ko PW, Lee CN, Lim TS, An SSA, Kim S; Alzheimer’s Disease All Markers (ADAM) Research group. CSF total tau/α-synuclein ratio improved the diagnostic performance for Alzheimer's disease as an indicator of tau phosphorylation. Alzheimers Res Ther. 2020 Jul 13;12(1):83. doi: 10.1186/s13195-020-00648-9. PMID: 32660565; PMCID: PMC7359621.
[39] Fink HA, Linskens EJ, Silverman PC, McCarten JR, Hemmy LS, Ouellette JM, Greer NL, Wilt TJ, Butler M. Accuracy of Biomarker Testing for Neuropathologically Defined Alzheimer Disease in Older Adults With Dementia. Ann Intern Med. 2020 May 19;172(10):669-677. doi: 10.7326/M19-3888. Epub 2020 Apr 28. PMID: 32340038.
[40] Groblewska M, Muszyński P, Wojtulewska-Supron A, Kulczyńska-Przybik A, Mroczko B. The Role of Visinin-Like Protein-1 in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis. 2015;47(1):17-32. doi: 10.3233/JAD-150060. PMID: 26402751.
[41] Zhang H, Ng KP, Therriault J, Kang MS, Pascoal TA, Rosa-Neto P, Gauthier S; Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer's disease. Transl Neurodegener. 2018 Sep 10;7:23. doi: 10.1186/s40035-018-0127-7. PMID: 30311914; PMCID: PMC6161434.
[42] Casaletto KB, Elahi FM, Bettcher BM, Neuhaus J, Bendlin BB, Asthana S, Johnson SC, Yaffe K, Carlsson C, Blennow K, Zetterberg H, Kramer JH. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology. 2017 Oct 24;89(17):1782-1788. doi: 10.1212/WNL.0000000000004569. Epub 2017 Sep 22. PMID: 28939668; PMCID: PMC5664306.
[43] ?hrfelt A, Dumurgier J, Zetterberg H, Vrillon A, Ashton NJ, Kvartsberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K. Full-length and C-terminal neurogranin in Alzheimer's disease cerebrospinal fluid analyzed by novel ultrasensitive immunoassays. Alzheimers Res Ther. 2020 Dec 22;12(1):168. doi: 10.1186/s13195-020-00748-6. PMID: 33353563; PMCID: PMC7756958.
[44] Tible M, Sandelius ?, H?glund K, Brinkmalm A, Cognat E, Dumurgier J, Zetterberg H, Hugon J, Paquet C, Blennow K. Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease. Neurology. 2020 Aug 25;95(8):e953-e961. doi: 10.1212/WNL.0000000000010131. Epub 2020 Jun 25. PMID: 32586895.
[45] Sandelius ?, Portelius E, K?llén ?, Zetterberg H, Rot U, Olsson B, Toledo JB, Shaw LM, Lee VMY, Irwin DJ, Grossman M, Weintraub D, Chen-Plotkin A, Wolk DA, McCluskey L, Elman L, Kostanjevecki V, Vandijck M, McBride J, Trojanowski JQ, Blennow K. Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimers Dement. 2019 Jan;15(1):55-64. doi: 10.1016/j.jalz.2018.08.006. Epub 2018 Oct 12. PMID: 30321501; PMCID: PMC6333489.
[46] Milà-Alomà M, Brinkmalm A, Ashton NJ, Kvartsberg H, Shekari M, Operto G, Salvadó G, Falcon C, Gispert JD, Vilor-Tejedor N, Arenaza-Urquijo EM, Grau-Rivera O, Sala-Vila A, Sanchez-Benavides G, González-de-Echávarri JM, Minguillon C, Fauria K, Ni?erola-Baizán A, Perissinotti A, Kollmorgen G, Suridjan I, Zetterberg H, Molinuevo JL, Blennow K, Suárez-Calvet M; ALFA Study. CSF Synaptic Biomarkers in the Preclinical Stage of Alzheimer Disease and Their Association With MRI and PET: A Cross-sectional Study. Neurology. 2021 Nov 23;97(21):e2065-e2078. doi: 10.1212/WNL.0000000000012853. Epub 2021 Sep 23. PMID: 34556565; PMCID: PMC8610620.
[47] Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, Levey AI, Seyfried NT. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020 May;26(5):769-780. doi: 10.1038/s41591-020-0815-6. Epub 2020 Apr 13. PMID: 32284590; PMCID: PMC7405761.
[48] Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer's Disease. Trends Mol Med. 2019 Feb;25(2):77-95. doi: 10.1016/j.molmed.2018.11.006. Epub 2019 Jan 2. PMID: 30611668.
[49] Bellaver B, Ferrari-Souza JP, Uglione da Ros L, Carter SF, Rodriguez-Vieitez E, Nordberg A, Pellerin L, Rosa-Neto P, Leffa DT, Zimmer ER. Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-analysis. Neurology. 2021 May 5:10.1212/WNL.0000000000012109. doi: 10.1212/WNL.0000000000012109. Epub ahead of print. PMID: 33952650.
[50] Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K, Kovatsi E, Pleschka C, Garcia-Esparcia P, Schmitz M, Ozbay D, Correia S, Correia ?, Milosevic I, Andréoletti O, Fernández-Borges N, Vorberg IM, Glatzel M, Sklaviadis T, Torres JM, Krasemann S, Sánchez-Valle R, Ferrer I, Zerr I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener. 2017 Nov 10;12(1):83. doi: 10.1186/s13024-017-0226-4. PMID: 29126445; PMCID: PMC5681777.
[51] Lee SH, Meilandt WJ, Xie L, Gandham VD, Ngu H, Barck KH, Rezzonico MG, Imperio J, Lalehzadeh G, Huntley MA, Stark KL, Foreman O, Carano RAD, Friedman BA, Sheng M, Easton A, Bohlen CJ, Hansen DV. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. Neuron. 2021 Apr 21;109(8):1283-1301.e6. doi: 10.1016/j.neuron.2021.02.010. Epub 2021 Mar 5. PMID: 33675684.
[52] Hu YB, Zhang YF, Ren RJ, Dammer EB, Xie XY, Chen SW, Huang Q, Huang WY, Zhang R, Chen HZ, Wang H, Wang G. microRNA-425 loss mediates amyloid plaque microenvironment heterogeneity and promotes neurodegenerative pathologies. Aging Cell. 2021 Oct;20(10):e13454. doi: 10.1111/acel.13454. Epub 2021 Sep 12. PMID: 34510683; PMCID: PMC8520725.
[53] Lai KSP, Liu CS, Rau A, Lanct?t KL, K?hler CA, Pakosh M, Carvalho AF, Herrmann N. Peripheral inflammatory markers in Alzheimer's disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry. 2017 Oct;88(10):876-882. doi: 10.1136/jnnp-2017-316201. Epub 2017 Aug 9. PMID: 28794151.
[54] Hao J, Qiao Y, Li T, Yang J, Song Y, Jia L, Jia J. Investigating Changes in the Serum Inflammatory Factors in Alzheimer's Disease and Their Correlation with Cognitive Function. J Alzheimers Dis. 2021;84(2):835-842. doi: 10.3233/JAD-210552. PMID: 34602472.
[55] Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer's disease: Potential novel targets for treatment. J Steroid Biochem Mol Biol. 2019 Jun;190:104-114. doi: 10.1016/j.jsbmb.2019.03.003. Epub 2019 Mar 13. PMID: 30878503.
[56] Dimache AM, ?alaru DL, Sasc?u R, St?tescu C. The Role of High Triglycerides Level in Predicting Cognitive Impairment: A Review of Current Evidence. Nutrients. 2021 Jun 20;13(6):2118. doi: 10.3390/nu13062118. PMID: 34203094; PMCID: PMC8234148.
[57] Lauriola M, D'Onofrio G, Ciccone F, Germano C, Cascavilla L, Paris F, Greco A. Relationship of Homocysteine Plasma Levels with Mild Cognitive Impairment, Alzheimer's Disease, Vascular Dementia, Psychobehavioral, and Functional Complications. J Alzheimers Dis. 2021;82(1):235-248. doi: 10.3233/JAD-210166. PMID: 34057086; PMCID: PMC8293649.
[58] Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T. Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis. Alzheimers Dement. 2014 Jul;10(4):485-502. doi: 10.1016/j.jalz.2013.05.1771. Epub 2013 Oct 19. PMID: 24144963.
[59] Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018 Nov;14(11):639-652. doi: 10.1038/s41582-018-0079-7. PMID: 30297701; PMCID: PMC6211654.
[60] Xu X, Cai X, Zhu Y, He W, Wu Q, Shi X, Fang Y, Pei Z. MFG-E8 inhibits Aβ-induced microglial production of cathelicidin-related antimicrobial peptide: A suitable target against Alzheimer's disease. Cell Immunol. 2018 Sep;331:59-66. doi: 10.1016/j.cellimm.2018.05.008. Epub 2018 May 24. PMID: 29861070.
[61] Lue LF, Kuo YM, Sabbagh M. Advance in Plasma AD Core Biomarker Development: Current Findings from Immunomagnetic Reduction-Based SQUID Technology. Neurol Ther. 2019 Dec;8(Suppl 2):95-111. doi: 10.1007/s40120-019-00167-2. Epub 2019 Dec 12. PMID: 31833027; PMCID: PMC6908530.
[62] Chiu MJ, Chen TF, Hu CJ, Yan SH, Sun Y, Liu BH, Chang YT, Yang CC, Yang SY. Nanoparticle-based immunomagnetic assay of plasma biomarkers for differentiating dementia and prodromal states of Alzheimer's disease - A cross-validation study. Nanomedicine. 2020 Aug;28:102182. doi: 10.1016/j.nano.2020.102182. Epub 2020 Mar 25. PMID: 32222476.
[63] Youn YC, Lee BS, Kim GJ, Ryu JS, Lim K, Lee R, Suh J, Park YH, Pyun JM, Ryu N, Kang MJ, Kim HR, Kang S, An SSA, Kim S. Blood Amyloid-β Oligomerization as a Biomarker of Alzheimer's Disease: A Blinded Validation Study. J Alzheimers Dis. 2020;75(2):493-499. doi: 10.3233/JAD-200061. PMID: 32310175.
[64] Feng L, Huo Z, Xiong J, Li H. Certification of Amyloid-Beta (Aβ) Certified Reference Materials by Amino Acid-Based Isotope Dilution High-Performance Liquid Chromatography Mass Spectrometry and Sulfur-Based High-Performance Liquid Chromatography Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Anal Chem. 2020 Oct 6;92(19):13229-13237. doi: 10.1021/acs.analchem.0c02381. Epub 2020 Sep 10. PMID: 32847351.
[65] Tarutani A, Miyata H, Nonaka T, Hasegawa K, Yoshida M, Saito Y, Murayama S, Robinson AC, Mann DMA, Tomita T, Hasegawa M. Human tauopathy-derived tau strains determine the substrates recruited for templated amplification. Brain. 2021 Sep 4;144(8):2333-2348. doi: 10.1093/brain/awab091. PMID: 33693528; PMCID: PMC8418341.
[66] Park D, Kim JH, Kim HJ, Lee D, Lee DS, Yoon DS, Hwang KS. Multiplexed femtomolar detection of Alzheimer's disease biomarkers in biofluids using a reduced graphene oxide field-effect transistor. Biosens Bioelectron. 2020 Nov 1;167:112505. doi: 10.1016/j.bios.2020.112505. Epub 2020 Aug 15. PMID: 32841782.